仮想アレーアンテナを用いたレーダーの研究開発 Development of Radars with Virtual Array Antennas

菅野真行 高山卓也 時枝幸伸 Masayuki Sugano Takuya Takayama Yukinobu Tokieda

菅原博樹 Hiroki Sugawara

要 旨

船舶用9GHz帯レーダーで使用するアンテナを電子走査アンテナで構成するには、多数のアンテナ素子が必要となり高コ ストの原因となる。この問題に対し、本研究では仮想アレーアンテナ技術を用い、送信と受信がそれぞれ16素子以内の電子 走査アンテナで、等価的に100素子程度のアンテナを使用した場合と同等のレーダー性能の実現を目指している。この技術 によりコスト削減を目的とした大幅な素子数の低減が可能になる。本技術に関して、計算機シミュレーションと、機能試作 機による実証実験による評価を実施した。評価の結果、本技術によって、少ないアンテナ素子で船舶レーダーとしての性能 が実現可能であることを確認できた。

Abstract

The antenna for general shipborne 9-GHz band radars requires roughly 100 elements for the composition in the form of a phased-array antenna; thereby the cost problem arises. As a solution to the problem, JRC has adopted the virtual array technique to reduce the number of necessary elements down to 16 for the transmitting antenna and the receiving antenna, respectively; nevertheless supporting the radar performance equivalent to systems with a 100-element antenna. We have evaluated the effect of the virtual array technique, throughout computer simulations and field experiments of the prototype radar with a virtual array antenna. Our evaluation shows that our novel technique is capable of sufficient performance for shipborne radars despite its reduced composition.

. まえがき

総務省の委託研究「電波資源拡大のための研究開発」の一 環として、干渉抑圧機能を備えた船舶レーダー用のアンテナ を研究開発している。船舶用9GHz帯レーダー用途で干渉抑 圧機能を備えたアンテナを電子走査アンテナで構成するには 多数の素子が必要となり、コスト増大が問題となる。その問 題に対し、送信素子と受信素子が各々16素子以内の電子走査 アンテナを用いて仮想アレーアンテナを形成することによっ て、等価的に100素子程度のアンテナを使用した場合と同等 のレーダー性能の実現を目標とし、研究を行った。本稿で は、9GHz帯レーダーを想定し、計算機シミュレーションと 機能試作機による実証実験結果によって、仮想アレーアンテ ナを用いたレーダーの効果を紹介する。

2. レーダーシステムの概要

本研究で使用するレーダー装置のイメージを図1に示す。 構造としては送信アンテナと受信アンテナを上下に配置し た空中線装置と,信号処理装置により構成される。

レーダーで用いる仮想アレーアンテナは図2に示すように数 波長間隔で配置された送信アンテナと、半波長間隔で並べら れ、送信アンテナの間隔と同じ配列長を持つ受信アンテナで 構成される。各送信アンテナからの送信信号を各受信アンテ ナで受信し、信号処理を施すことで、間隔が広い送信アンテ ナ間を受信アンテナで補間するようにして仮想アレーアンテ ナを形成する。これにより、従来必要としていた数分の1の素 子数で所望のアンテナ指向性を実現できる。各送信アンテナ は互いに直交性をもつ信号(直交信号)を送信する。一方、 受信信号は図3に示す信号処理によってレーダー映像に変換 される。具体的には受信した送信信号を各受信素子のもつ マッチドフィルタで分離し、仮想アレーアンテナの信号を得 る。そして、取得した信号を空間方向に処理することで方位 方向に変換する。この処理はディジタルビームフォーミング (DBF)と呼ばれ、窓関数の乗算、およびフーリエ変換によっ て実現できる。信号の全レンジについてDBF処理をすること により、レンジ-方位の二次元レーダー画像が得られる。なお、 本研究では1回のパルス送信を1スイープ、1スイープで得られ る二次元画像をスイープ画像と呼んでいる。

図2 仮想アレーアンテナの原理 Fig.2 Principle of virtual array antennas.

本レーダーでは送信アンテナおよび受信アンテナがビー ム幅の広い指向特性をもつため、実開口レーダーと比べて アンテナ利得が小さい。そこで、複数のスイープ画像をコ ヒーレント積分することにより最終的な画像を得る。この 画像をスキャン画像と呼ぶ。これにより、単一スイープ画 像では受信信号のSN比が悪く検出困難であったレーダー断 面積(RCS)の小さな物標を検出することが可能となる。

(b) スキャン画像の取得の流れ

図3 信号処理の流れ

3. レーダー性能シミュレーション

前述したレーダーシステムにおける信号処理の効果について以下の条件を設定し、シミュレーション結果を用いて レーダー性能を評価する。なお、本レーダーはパルス圧縮 を用いたレーダーを想定している。

3.1 シミュレーションで想定するレーダー仕様

以下にシミュレーションで想定したレーダー仕様を示す。

- 9450MHz (1) 中心周波数 (2) アンテナ素子数 送信 8素子 受信 14素子 (3) アンテナ素子間隔 送信 7波長 受信 0.5波長 テイラー分布 (4) 窓関数 サイドローブレベル 40dB (5) パルス圧縮率 25525.5マイクロ秒 (6) 送信パルス幅
- (7) サンプリング周波数 20MHz

3.2 距離方向分解能

パルス圧縮を用いたレーダーの距離方向の分解能は、送 信パルス幅とパルス圧縮率により定まるパルス圧縮後のパ ルス幅に依存する。仕様のようにパルス圧縮率を255、送信 パルス幅を25.5マイクロ秒とした場合、圧縮後のパルス幅は 0.1マイクロ秒となる。圧縮後のパルス幅は距離換算すると 15mである。以下に、この条件において、国際海事機関 (IMO)によるレーダー性能基準である40mの距離分解能を シミュレーション検証した。シミュレーション結果を図4に 示す。結果から距離40mの間隔で配置した3つの物標が分離 できることが示された。

3.3 方位方向分解能

レーダーの方位方向の分解能は、使用周波数の波長に対 するアンテナ開口長で定まるビーム幅に依存する。本レー ダーではM素子からなる受信アンテナと、N素子からなる送 信アンテナを使用し、計M×N素子が空間的に配置されてい る仮想アレーアンテナの信号を得ることができる。この仮

特

想アレーアンテナの信号を想定した指向性を計算する。

図5に示すように送信アンテナ8素子と受信アンテナ14素 子を掛け合わせた112素子の仮想アレーアンテナを想定する 場合のビーム幅は1.3度となる。このビーム幅は112素子のア レーアンテナで実現可能なビーム幅と同等であり,方位方 向分解能として2.5度に相当する。また,シミュレーション ではDBF処理の際,テイラー分布による重みづけを考慮し ている。

3.4 探知性能

探知性能は、レーダー性能および物標のRCSにより決まる 受信信号電力と雑音電力との比で定まる。仮想アレーアン テナを用いたレーダーでは前章で述べたように送信、受信 アンテナはビーム幅の広い指向特性を持つため、実開口 レーダーと比べてアンテナ利得が小さい。そのため、信号 処理による信号電力対雑音電力比(SN比)の改善が必須と なる。

前述したレーダーの仕様においてパルス圧縮,DBF処理, スイープ積分によるSN比の改善量を理論的に算出した結果 を表1,シミュレーション結果を図6に示している。表1に記 載した改善量の理論値と図6が示すSN比が合致することか ら,各信号処理において妥当な効果が得られていることが わかる。

	step.	
信号処理	SN比改善量	備考
パルス圧縮	+24 dB	圧縮比 255
DBF処理	+20 dB	アレイ数 112
スイープ積分	+24 dB	積分数 255

	表1	信号処理	による	3 S	N比	改善量	
Table 1	Signal	-to-noise	ratio	at	each	signal	processing

3.5 素子間誤差の影響

仮想アレーアンテナにおいて送信側と受信側の素子間の ばらつきを考慮した際の方位方向の指向性におけるサイド ローブ特性への影響を検証する。サイドローブレベルが上 がることは偽像発生確率が上昇し,装置の性能劣化原因と なってしまう。素子間のばらつきの原因としてはアンテナ 特性のばらつきや、送信器、受信器、ケーブルの損失、遅 延のばらつきなどがあり、ある程度はキャリブレーション によって補正できるが少なからず誤差を生じてしまう。図7 にキャリブレーション誤差による方位方向の指向性におけ るサイドローブ特性のシミュレーション結果を示す。送信 素子のキャリブレーション誤差、受信素子のキャリブレー ション誤差、キャリブレーション誤差なしの場合について それぞれ計算した。この結果からわかるように、送信素子 のキャリブレーション誤差は受信素子でビームフォーミン グさせた場合のパターン特性をもっており、信号入射方向 近辺で最も大きいサイドローブ特性を示す。また、受信素 子のキャリブレーション誤差は広い間隔で置かれた送信ア ンテナのグレーティングローブの方向でピークをもつ。以 上の結果から、仮想アレーアンテナの素子を線形直線アレ イで配置(受信アンテナを近接して配置し,送信アンテナ を広い間隔で配置)した場合、送信素子のキャリブレーショ ン誤差は物標方向近辺で、受信素子のキャリブレーション 誤差は物標方向を中心とした送信素子のグレーティング ローブの位置で上昇する傾向がある。

日本無線技報 No.64 2013 - 29

4. 機能試作機による実証試験

仮想アレーアンテナの指向性およびレーダーの性能評価 について、機能試作機により実施し、仮想アレーアンテナ を用いたレーダーの効果について検証する。

4.1 シミュレーションで想定するレーダー仕様

以下に機能試作機の基本仕様を示す。

(1)	アンテナ 形式	ダイポール
	偏波	水平偏波
(2)	周波数	9450MHz
(3)	チャンネル数	1CH
(4)	アンテナ素子数	送信 4素子
		受信 7素子
(5)	アンテナ素子間隔	送信 3.92波長
		受信 0.56波長
(6)	送信電力	0.1W/素子
(7)	スイープ積分数	255
(8)	ビーム走査角度範囲	±45度

4.2 仮想アレーアンテナ指向性評価

仮想アレーアンテナの指向性の測定結果を図8に示してい る。測定結果を見ると図に示すように基本仕様の構成から 想定されるビーム幅5度(走査角度:0度)を実現できてお り,各素子の誤差によるサイドローブ特性がシミュレー ションの傾向と合致している。

図8 仮想アレーアンテナ指向性測定結果 Fig.8 Measured directivity pattern of the virtual array antenna.

4.3 レーダー画像評価

機能試作機を用いて三鷹製作所内からレーダー画像を観 測した。機能試作機の設置状況を図9に示している。機能試 作機は第4.2節で測定したアンテナを使用し,送信部,受信 部,信号発生・データ収録部,そしてノートパソコンで構 成している。

図9 機能試作機 設置状況 Fig.9 Prototype system in the experiment.

観測した三鷹製作所周辺のレーダー画像を図10に示して いる。物標としては10km先にある新宿ビル群を確認するこ とができており,仮想アレーアンテナで想定した方位方向 の分解能を得られていることがわかる。

図10 三鷹製作所周辺のレーダー画像 Fig.10 Radar image around Mitaka plant.

5. あとがき

本稿では、仮想アレーアンテナを用いたレーダーの信号 処理の概要を説明し、計算機シミュレーションによる性能 評価結果を示した。更に、機能試作機による実証試験を行 い、仮想アレーアンテナを用いたレーダーの効果を紹介し た。本システムは今後、船舶レーダーシステム等に適用し、 電子走査アンテナの特長である高速スキャンによる 高速移 動物標の検出が期待できる。また、電子走査アンテナを使 用したシステムの低コスト化への一提案としても期待され ている。

参考文献

- (1) Jian Li, Petre Stoica, "MIMO Radar Signal Processing", John Wiley & Sons, Inc., 2008.
- (2) 富木洋一,時枝幸伸,菅原博樹, "知識データベースを 用いたレーダー干渉除去処理の開発",信学技報,vol.
 112, no. 360, SANE2012-123, pp. 19-24, 2012年12月.
- (3) Takayama, T., Tokieda, Y., and Sugawara, H., "MIMO Imaging Radar with Enhanced Range-Azimuth Sidelobe Suppression", Proceedings, Radar 2012 IET Conference, Oct., 2012.

用語一覧

DBF: Digital Beam Forming (デジタルビームフォーミング) RCS: Radar Cross Section (レーダー断面積) 特 集